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Behavioral ecologists interested in comparative cognition have struggled to design tasks that are both ecologically relevant and exper-
imentally rigorous. In experimental psychology, standardized tests of reversal learning, set-shifting and self-control have long been 
used to measure aspects of flexible behavior especially with regards to determining the neural mechanisms that enable animals and 
humans to rapidly and efficiently adapt to different situations. More recently, behavioral ecologists have used the term “behavioral 
flexibility” more broadly to explain differences in traits such as personality and innovation. Here, we argue that the term behavioral 
flexibility designates too many non-equivalent traits, and that this can lead to misconceptions about the nature of cognitive abilities.

INTRODUCTION
The terms “behavioral flexibility” and “cognitive flexibility”, used 
interchangeably, have been employed for decades in the field of  
experimental psychology to label a form of  cognition that enables 
animals and humans to adapt their behavior to changing environ-
mental contingencies (e.g. Grattan and Eslinger 1989; Ragozzino 
et al. 1999; Floresco et al. 2009). In experimental psychology, com-
monly used tests of  behavioral flexibility include reversal learning, 
set-shifting and self-control. In recent years, the term has featured 
prominently in behavioral ecology, where it is sometimes applied 
in the same manner as in psychology via tests of  reversal learning, 
but more often in the context of  innovation (Sol et al. 2002; Reader 
and Laland 2003) and problem-solving (Leal and Powell 2012). 
However, there is increasing evidence that innovative problem-
solving and reversal learning are distinct, if  not opposite, abilities 
(e.g. Griffin et al. 2013), while within psychology, different tests of  
flexibility may well be measuring different traits (Griffin and Guez 
2014). If  we add to this the many unrelated behaviors that the term 
has been applied to (e.g. animal personality: van Overveld and 
Matthysen 2013); defense mechanisms: Stoekl et al. 2015); division 
of  labor: Kwapich and Tschinkel 2016), there is a clear risk that 
behavioral flexibility as a concept, let alone a term, will completely 
lose its significance.

Here, we briefly survey the ways in which behavioral flexibility 
has been assessed and conclude that even if  the different assays 
used in behavioral ecology are conceptually linked, there is little 
empirical evidence that they are related. We argue that referring to 
such a large number of  potentially non-equivalent and non-related 

skills with a single term is not useful, often misleading and should 
be avoided.

BEHAVIORAL FLEXIBILITY IN PSYCHOLOGY
In experimental psychology, the concept of  behavioral flexibil-
ity emerges from principles of  animal learning (for reviews, see 
Sutherland and Mackintosh 1971; Dickinson 1981) in which an 
animal makes a decision or choice that is largely influenced by vari-
ous schedules of  reward and future reward outcomes (see Clarke 
et  al. 2004; Chudasama 2011). One commonly used scenario, 
and one that has been readily adopted in comparative studies, is 
the reversal learning paradigm, where a dominant response must be 
overridden due to changes in reward contingencies (see e.g. Jones 
and Mishkin 1972; Rolls 2000). First, the animal associates one 
rewarded conditional stimulus (CS+) with a response leading to a 
reward in the presence of  a second, unrewarded stimulus (CS−). 
This process may continue over several hundred trials, encourag-
ing the formation of  a dominant response. Then, unknown to the 
animal, the stimulus-reward contingency is reversed and the animal 
must now change its response and use the previously unrewarded 
stimulus as a cue. There is some response persistence to the initially 
rewarded stimulus, as would be expected, before the animal works 
out the new rule. In some cases, however, the response persistence 
may be exaggerated. This is the case, for example, of  rats or mon-
keys (marmosets and macaques) with orbitofrontal damage, indi-
cating that this structure is involved in reversal performance (Dias 
et  al. 1996; Chudasama and Robbins 2003; Schoenbaum et  al. 
2003; Izquierdo et al. 2004; Kim and Ragozzino 2005; Jang et al. 
2015).

Related to reversal learning is the set-shifting paradigm, where 
the animal’s attention is solicited by different stimulus dimen-
sions and the animal must alternate between strategies, rules, and 
attentional sets (Roberts et  al. 1988). The cues can be olfactory, 
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tactile, visual and spatial at the same time. The subject needs to 
first focus on one type of  stimulus (for example, a rewarded and 
an unrewarded stimulus that differ in color) to get the reward as 
in a classic discrimination learning task, but then it must switch to 
another stimulus dimension (for example, spatial position or shape 
or texture) to distinguish the rewarded and unrewarded stimuli in 
the next phase, ignoring the previously rewarded color dimension 
(Dias et al. 1996; Oswald et al. 2001; McAlonan and Brown 2003; 
Brigman et al. 2005; Floresco et al. 2008). Therefore, in set-shifting, 
the rule is less tangible and the animal must form multi-dimen-
sional attentional sets and shift between them to succeed. Although 
reversal learning and set shifting are related, they are anatomically 
dissociable: reversal learning, which involves adapting behavior in 
accordance with changes in stimulus-reward contingencies, requires 
an intact orbital prefrontal cortex in mammals, whereas switching 
attention between perceptual dimensions as in set-shifting relies on 
the lateral prefrontal cortex in primates or medial prefrontal cor-
tex in rats (Chudasama and Robbins 2006; Nilsson et al. 2015). In 
sum, set-shifting tasks are designed to measure the subject’s ability 
to switch strategies, rather than simply learn a new association by 
reversing a previous one, and this is reflected in the different neural 
circuits that are involved in the two tasks.

Self-control is considered to be another aspect of  behavioral flex-
ibility both by experimental psychologists (see review by Coutlee 
and Huettel 2012) and behavioral ecologists (e.g. Amici et al. 2008; 
Boogert et al. 2011). Sometimes also referred to as “cognitive con-
trol”, self-control is defined as the extent to which an animal is able 
to withhold or inhibit its action in the face of  a more immediate 
apparent reward. One way of  testing for spatial self-control is the 
detour-reaching task, commonly used in comparative studies, which 
requires the animal to inhibit direct attempts to reach a visible food 
reward in a transparent apparatus, and to instead make a detour 
around the transparent obstacle to retrieve the food (Diamond 
1990; Wallis et  al. 2001). Self-control probably involves different 
brain areas than do reversal learning and set-shifting, at least in 
humans (see Aron et  al. 2014). Although this is still a matter of  
debate, the right inferior frontal cortex seems to be one of  the main 
areas responsible for self-control (Aron et  al. 2014, but see Swick 
et  al. 2008). In short, self-control tasks assess a subject’s ability to 
inhibit its initial response of  using the simplest route or strategy to 
focus on an indirect, but more efficient approach, an ability that 
appears to be neurologically distinct from reversal and set-shifting 
tasks’ proficiencies.

Behavioral ecologists that look to psychology for standard-
ized, well documented assays of  animal cognition should thus be 
aware that, whatever the conceptual similarities between the tasks 
described above, there are thus clear differences in the traits that 
they measure (reversal of  an association, attention to different cue 
dimensions, inhibition or impulse control), as well as their neural 
substrates (e.g. lateral prefrontal, orbitofrontal or right inferior fron-
tal cortex; Wallis et al. 2001; Chudasama et al. 2003; Chudasama 
and Robbins 2003; Rudebeck et al. 2006; Kühn et al. 2009; Sharp 
et al. 2010; Aron et al. 2014). This heterogeneity needs to be taken 
into account when transposing tasks and their interpretation to the 
more naturalistic situations that behavioral ecologists usually focus 
on. For example, although detour-reaching and reversal learning 
are both said to measure flexibility, a study on wild-caught song 
sparrows found that the two tasks had “opposite” relationships 
with song repertoire: repertoire size had a positive relationship 
with detour reaching performance, but a negative one with reversal 
learning (Boogert et al. 2011).

BEHAVIORAL FLEXIBILITY IN ECOLOGY
Behavioral ecologists sometimes use the same tasks as experimental 
psychologists (e.g. reversal learning: Bond et al. 2007, detour reach-
ing: Boogert et  al. 2011), but they also often think of  behavioral 
flexibility in terms of  innovation and problem solving (e.g. Reader 
and Laland 2002; Sol et  al. 2002; Tebbich et  al. 2010; Wright 
et  al. 2010; Huebner and Fichtel 2015). Innovation is defined in 
non-humans as a solution to a novel problem or a novel solution to 
an old problem (Kummer and Goodall 1985). Extractive foraging 
problems requiring obstacle removal have become a classic experi-
mental test for innovation, following decades of  studies on the 
origin and spread of  the oldest (1921) animal innovation in the lit-
erature, the opening of  milk bottles by tits (Fisher and Hinde 1949). 
While there is still a debate about the relative roles of  persistence, 
motor diversity and cognition in the solving process (Griffin et al. 
2014; Quinn et  al. 2014; Rowe and Healy 2014; Thornton et  al. 
2014; Morand-Ferron et  al. 2015; Cauchoix and Chaine 2016; 
Diquelou et  al. 2016; Pritchard et  al. 2016), there is some agree-
ment that obstacle removal problems are a good way of  assessing 
innovative foraging in experimental tests (reviewed in Griffin and 
Guez 2014). Studies on birds are the most numerous in this field 
(but see Thornton and Samson 2012; Benson-Amram et al. 2016). 
Overall, the studies suggest a negative (interindividual: Griffin et al. 
2013, interpopulational: Tebbich and Teschke 2014, interspecific: 
Tebbich et  al. 2010; Tebbich et  al. 2012) or zero (interindividual: 
Boogert et  al. 2011; Isden et  al. 2013; Shaw et  al. 2015; Logan 
2016, interpopulational: Audet et al. 2016) relation between rever-
sal learning and problem-solving performance. Likewise, problem-
solving and detour reaching performance are often uncorrelated in 
birds (Boogert et al. 2011), but also interspecifically in great apes: 
orangutans are by far the best of  the four great apes in detour-
reaching (Vlamings et al. 2010), but the worst in an extractive prob-
lem requiring repeated innovation (Manrique et al. 2013).

By their very nature, reversal learning tasks might measure very 
different processes than the ones measured by innovation and 
extractive foraging problems. In a reversal task, there is a sudden 
change in the relationship between two cues and a reward, such 
that the cue that repeatedly predicted the reward in preceding tri-
als is no longer predictive, and the cue that never predicted reward 
becomes highly predictive. In serial reversals, previously correct 
cues repeatedly become suddenly incorrect and previously incor-
rect cues repeatedly become correct. Persistence leads to errors in 
such tasks (see review by Nilsson et al. 2015), but persistence is on 
the contrary a strong facilitator of  success in innovative problem-
solving (Gajdon et al. 2006; Tebbich et al. 2010; Overington et al. 
2011; Benson-Amram and Holekamp 2012; Cole and Quinn 2012; 
Thornton and Samson 2012; Cauchard et al. 2013; Huebner and 
Fichtel 2015; Griffin and Guez 2016). Chow et  al. (2016) have 
recently tested the effects of  persistence and flexibility on problem-
solving efficiency in grey squirrels. They found that “flexibility”, 
measured as the rate of  switching between tactics, was not linked 
to problem-solving performance, whereas persistence was a strong 
predictor of  success. In addition, the sudden and often repeated 
changes in cue value in reversal and set-shifting tasks character-
ize neither extractive foraging problems in captivity or innovation 
cases in the wild. In fact, the problems that are solved in the wild 
are often very similar to captive extractive foraging problem-solving 
tasks but, to our knowledge, do not resemble reversal learning tasks.

While neural substrates of  innovative problem-solving are still 
poorly understood, a few studies on laboratory rodents points to 
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specific areas of  the prefrontal cortex. In mice, inactivation of  the 
medial prefrontal cortex causes deficits in an obstacle removal prob-
lem (Ben Abdallah et al. 2011) and in set-shifting, but not in rever-
sal learning (Floresco et al. 2008), while in rats, the beta-adrenergic 
antagonist propranolol negatively impacts obstacle removal but 
not set-shifting (Hecht et al. 2014). This neurobiological evidence, 
together with correlational data, suggests that innovative problem-
solving and other behavioral flexibility measurements are distinct 
proficiencies. As most recent studies of  innovative problem-solving 
are done on birds, it should be noted that multiple lines of  evidence 
point to the nidopallium caudolaterale (NCL) as the equivalent of  
the mammalian prefrontal cortex, providing a clear candidate struc-
ture for the control of  similar behaviors in the 2 classes (Mogensen 
and Divac 1993; Rose and Colombo 2005; Rose et al. 2010; Herold 
et al. 2011; Helduser and Güntürkün 2012; Shanahan et al. 2013; 
Veit and Nieder 2013; Lengersdorf  et al. 2015).

Innovating in the flexible usage of the term

While reversal learning, innovation and problem-solving domi-
nate the literature on flexibility in behavioral ecology, the term has 
recently come to be used to qualify a surprisingly broad range of  
behaviors, including variation in neophilia/neophobia in primates 
(Bergman and Kitchen 2009), exploratory behavior in birds (van 
Overveld and Matthysen 2013), vigilance level in birds (Couchoux 
and Cresswell 2012), tool-use in primates (Vale et  al. 2016), nest 
site choice in turtles (Barsante Santos et al. 2016), division of  labor 
among colony members in ants (Bernadou et al. 2015; Kwapich and 
Tschinkel 2016) or between parents in frogs (Ringler et  al. 2015), 
daily activity allocation in fish (Fingerle et  al. 2016), niche alloca-
tion in rats, fish and birds (Igulu et al. 2013; Hunt 2016; Loveridge 
et al. 2016), courtship timing in spiders (Bardier et al. 2015), adjust-
ment of  feeder use in birds (Herborn et  al. 2014), social organi-
zation in primates (Kamilar and Baden 2014; Otani et  al. 2014), 
trial-and-error (discrimination, not reversal) learning in bats (Zhang 
et  al. 2014), diversity of  material used for nests in bees (MacIvor 
and Moore 2013), intensity of  chemical defense in wasps (Stoekl 
et al. 2015), foraging activity across trials in fish (Adriaenssens and 
Johnsson 2011), degree of  soft tissue retraction in foraging snails 
(Edgell et  al. 2009), and the adjustable choice of  suction or com-
pression to process food items in elasmobranches (Wilga et al. 2012). 
This rich diversity of  behavioral investigations is useful, as it pro-
vides a detailed picture of  how behaviors are modified under chang-
ing conditions. However, there is little chance that all these cases 
share a similar etiology. Therefore, referring to this huge diversity 
of  traits under the same blanket term is problematic. Within certain 
limits, a concept can be multifaceted, but the number and nature 
of  the different contexts in which “behavioral flexibility” has been 
applied seems excessive. Based on the actual flexible usage of  the 
term, flexibility is attributed to such a wide array of  behaviors that 
are likely to have very different underpinnings that the term is more 
confusing than useful, especially in cognitive ecology. In this field, 
experiments implicitly or explicitly aim to understand the cognitive, 
and eventually neural processes, behind the behaviors tested. Given 
the mechanistic implications of  such experimental studies, the use 
of  a blanket term is especially problematic, as studies within both 
psychology and behavioral ecology point to heterogeneity in the co-
variation and neural underpinnings of  the different assays. In large 
scale comparative analyses of  innovation in the wild (e.g. Reader and 
Laland 2002; Sol et al. 2002), where the focus is not on mechanisms, 
but on a wide variety of  manifestations that go from simple incorpo-
ration of  new foods in the diet to more sophisticated technical skills 

(Overington et al. 2009; Ducatez et al. 2015; Navarrete et al. 2016), 
the problem is less acute, but still preoccupying.

CONCLUSION
What’s flexible in behavioral flexibility? In brief, ways of  measuring 
it. Our review suggests that different assays of  behavioral flexibil-
ity used in experimental psychology and behavioral ecology are not 
necessarily equivalent, do not co-vary and are controlled by differ-
ent neural mechanisms. Some of  these assays are even designed to 
assess opposite abilities, given the contrasting effect of  persistence 
on the performance of  each task. Consequently, referring to inno-
vative problem-solving, reversal learning, set-shifting, self-control 
or other even more distant traits under the same general term of  
behavioral flexibility can lead to misconceptions about how behav-
ior should be interpreted, especially when comparing cognitive 
mechanisms across species. Thus, we suggest that the term should 
be avoided, at least in behavioral ecology. The precise tasks used to 
assess flexibility in experimental studies, whether they use the stan-
dard tasks and model species of  psychology or the more naturalistic 
context of  behavioral ecology, should be specified, as we gain more 
and more detailed knowledge of  the mechanisms and the neural 
events that regulate the different ways in which animals change 
their behavior in the face of  environmental challenges.
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